Application Notes Archives | Edinburgh Instruments

ResourcesApplication Notes

Showing 1 - 10 of 57 results

Application Note: Characterisation of SERRS Nanoparticles Using UV-Vis and Raman Spectroscopy

Surface-enhanced resonance Raman scattering (SERRS) is a technique that offers unparalleled sensitivity and specificity in spectroscopic detection and is promising for many applications in analytical research. In this new Application Note, we use the DS5 UV-Vis Dual Beam Spectrophotometer and RM5 Raman Microscope to demonstrate that the optical response of SERRS nanosensors contains combined SERS and RRS effects.

Application Note: Photoluminescence of Lanthanide-based Optical Probes

Optical probes based on lanthanide complexes are of particular interest in the biomedical field and life sciences due to their unique magnetic and photoluminescent properties. In this application note, an Edinburgh Instruments FS5 Spectrofluorometer is used for a complete characterisation of the lanthanide-based optical probes.

Application Note: High-Resolution Raman & Photoluminescence Imaging of MoS2

In this application note, the transition-metal dichalcogenide molybdenum disuflide (MoS2) is characterised using the RM5 Confocal Microscope with Raman and photoluminescence imaging to characterise its layer-dependent optoelectronic properties.

Application Note: Pesticide Detection on Apple Skin using SERS

Surfaced enhanced Raman scattering (SERS) is a great technique to enhance the Raman scatter from a sample. One application SERS is well suited to is testing for the presence of pesticides on apple skin. This is important for keeping produce safe for consumptions, as well as monitoring the environmental impact of using pesticides.

Application Note: Multimodal Raman, Photoluminescence & SHG Imaging of CVD Grown WSe2

In this application note, the transition-metal dichalcogenide tungsten diselenide (WSe2) is characterised using the RMS1000 Confocal Microscope with five imaging modalities: reflected brightfield & darkfield, Raman, photoluminescence and second harmonic generation to fully characterise its layer-dependent optoelectronic properties. The multimodal capabilities of the RMS1000 Confocal Microscope make it an ideal imaging platform for studying the optoelectronic properties of transition-metal dichalcogenides.

Application Note: Multiphoton Imaging of Mouse Intestine

In this application note, an RMS1000 Confocal Microscope is used to image a tissue section of mouse intestine using two-photon excited fluorescence and second harmonic generation microscopy.

Application Note: Rapid Excitation Emission Matrix Analysis of Single Wall Carbon Nanotubes

Single-wall carbon nanotubes (SWCNTs) have unique electrical, thermal, mechanical, and optical properties which make them attractive for a wide variety of applications; ranging from drug delivery to battery electrodes. In this application note the FLS1000 Photoluminescence Spectrometer equipped with an InGaAs NIR camera is used to identify the chiral indexes present in a SWCNT sample using excitation emission matrix spectroscopy.

Application Note: Whisky Analysis by Raman Spectroscopy

Raman spectroscopy is an analytical technique which can be used both quantitatively and qualitatively. This application note details the quantitative use of Raman spectroscopy to determine ethanol content in samples of whisky. Qualitatively, Raman spectroscopy can also be used for whisky analysis to ensure it does not contain methanol, a toxic alcohol which can be fraudulently used in alcohol sales to boost profits.

Application Note: Molecular Beacon Probe Fluorescent Detection of DNA

Molecular beacon probes are a sequence of nucleotides (the building blocks of DNA and RNA) that can be used to fluorescently detect the presence of a specific sequence of DNA or RNA. With real-world examples as PCR quantification, in vivo RNA detection, pathogen detection and viral load quantification. The use of molecular beacons, coupled with a sensitive spectrofluorometer facilitates the measurement of extremely low concentrations of DNA or RNA. In this application note, nanomolar concentrations of cDNA were quantified using a molecular beacon while controlling the temperature of incubation and measuring the sample emission with an Edinburgh Instruments FS5 Spectrofluorometer.

Application Note: Measuring Ethanol Content in Hand Sanitiser Using Raman Spectroscopy

Hand sanitiser needs to >60% ethanol to be effective at killing microbes on your hands. This Application Note details how Raman spectroscopy can be used to create ethanol calibration curves providing a rapid method for ensuring hand sanitisers meet the 60% requirement.