Resources – Edinburgh Instruments

Resources

Showing 1 - 10 of 149 results


Time-resolved Spectroscopy of Phosphorescent Oxygen Sensors in a Relevant in vitro Environment for Biomedical Applications

This customer written application note details how researchers from the Air Force Research Laboratory have outfitted an Edinburgh Instruments FLS1000 Photoluminescence Spectrometer to assess candidate dissolved oxygen sensors.


Application Note: Gemstone Identification Using Raman Microscopy

The gemstone industry suffers massively from forgeries that even highly experienced jewellers cannot determine. Read this application note to discover how Raman microscopy offers itself as a useful technique in the identification of gemstones.


Application Note: Raman Microscopy of Graphene

Graphene is the thinnest material known to exist, whilst also being extremely strong - around 200 times stronger than steel. Graphene is an excellent conductor of electricity and heat as it is optically transparent. The applications of graphene are extensive, and include energy storage, photodetectors, and computer chips. In this application note we highlight how Raman microscopy is an essential tool for any material scientist researching graphene.


Avoiding Dead Time Losses with Reverse Mode TCSPC in the FLS1000

Time-correlated single photon counting (TCSPC) is the method of choice for measuring fluorescence lifetimes due to its excellent time-resolution. TCSPC can be thought of as a very fast stopwatch with two inputs (Figure 1)...


LP980 Transient Absorption Spectrometer Diffuse Reflection Accessory; Alignment and Example Measurements of Benzil Powder

This Technical Note is written to show customers how to properly align and measure solid samples using the LP980 Transient Absorption Spectrometer when equipped with the diffuse reflection accessory.


Benefits of Using a Gated PMT Detector in the FLS1000

The photomultiplier tube (PMT) is the detector of choice for high performance fluorescence spectrometers such as the Edinburgh Instruments FLS1000, due to its excellent light sensitivity and ability to be used for both steady-state and time-resolved measurements...


Raman Spectroscopy as a Tool for Studying Polymer Phase Transitions

Semicrystalline polymers are the largest group of commercially produced plastics. Heating and cooling of these polymers between phase transitions is used industrially to shape polymers into their final product. In this application note the RMS1000, with a heated stage, is used to observe phase transitions in two polymers; polyethylene, and nylon-6.


Discrimination of Cooking Oils Using Raman Spectroscopy

Cooking oils are one of the main components of the human diet. Adulteration of extra virgin olive oil with cheaper oils is a common problem in food fraud. This application note highlights how Raman spectroscopy in combination with chemometrics can be used to identify cooking oil adulteration.


Identification of Microplastics Using Raman Spectroscopy

Microplastic pollution is a growing environmental issue. Identification is crucial for assessing their risk to the environment, wildlife, and mankind. Raman microscopy is a great tool for the identification of small microplastics. This application note explores how the RM5 Raman Microscope combined with the KnowItAll Raman database can be used to identify polymers commonly found in the Earths aquatic systems.


Temperature Dependent Triplet States of Benzophenone; Spectral and Lifetime Measurements Utilising Transient Absorption Spectroscopy

In this application note, we demonstrate how transient absorption spectroscopy and temperature-dependent measurements can be employed to investigate and understand the nature of photoexcited triplet states of a molecule.