Application Notes Archives | Edinburgh Instruments
Menu

Showing 1 - 10 of 35 results

Kinetics of Photocatalysis Reactions Studied by Transient Absorption Spectroscopy

Photocatalysis is the rate increase of a chemical reaction by light, often in the presence of a catalyst that starts the reaction upon irradiation. Photocatalysts are typically semiconducting metal oxides such as ZnO, Fe2O3 or TiO2 which are employed as particles in solution. When absorbing light, these materials are able to generate electrons and holes which go on to react with chemical species on their surface. Find out how our LP980 Spectrometer was used in this recent application note.

Fluorescence, Delayed Fluorescence and Phosphorescence Spectra of a TADF Emitter Measured using the FLS1000 with a VPL laser and Gated PMT Detector

Materials exhibiting thermally activated delayed fluorescence (TADF) have attracted widespread research attention as a new generation of high-efficiency emitters for use in Organic Light Emitting Diodes (OLEDs). In a TADF OLED, triplet excitons are converted to singlet excitons through a thermally assisted reverse intersystem crossing which enables internal quantum efficiencies of 100% to be achieved.1

Proton-Coupled Electron Transfer (PCET); Spectral and Kinetic Transient Absorption Analysis of Acridine Orange with Tri-Tert-Butylphenol

Understanding fundamental photo-induced proton-coupled electron transfer (PCET) reactions of small molecules is central to research ranging from solar fuels, biological signalling, and organic electronics. By combining spectral and kinetic information of the photo-generated excited states and radical species present, researchers are able to elucidate the PCET reaction mechanisms involved in these applications. The Edinburgh Instruments LP Transient Absorption Spectrometer is the world’s only commercial system capable of recording instantaneous spectral information utilising an ICCD camera, while then easily being able to switch to measuring kinetic data on a PMT detector – all under software control. It was used to carry out the research in this application note.

Photogenerated Excited States in Solubillized Single-Wall Carbon Nanotubes; Transient Absorption and Oxygen Dependence of the Triplet

Single-walled carbon nanotubes (SWCNT) feature immense tensile and thermal strength with advantageous 1-dimensional molecular wire electronic properties. The Edinburgh Instruments LP980 Transient Absorption Spectrometer is well suited to study these photo-generated excited states, especially with the capability to add near-infrared (NIR) detectors needed to capture the transient species in these materials.