Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Role of the Pinhole in a Confocal Microscope

  • July 8, 2021

KEY POINTS

  • The pinhole in a confocal microscope improves spatial resolution by blocking out-of-focus light.
  • It specifically enhances axial resolution, allowing for precise depth sectioning.
  • Pinhole size dictates the trade-off between resolution and signal intensity.
Edit Content

What is a Pinhole in a Confocal Microscope?

The pinhole is the defining feature of a confocal Raman Microscope. It provides major advantages in spatial resolution and imaging contrast over a conventional optical microscope.

Why is a Pinhole Required?

When laser light is focused into a sample by a Raman microscope, a three-dimensional excitation volume is formed within the sample. This volume is known as the excitation point spread function (PSF) and a representation of its shape is shown in Figure 1a. As the light converges towards the focal point, the diameter of the PSF decreases, reaching a diffraction limited minimum diameter at the focal plane followed by an increase in diameter as the light diverges.  The exact shape of the PSF is heavily dependent on the optical properties of the sample such as opacity at the excitation wavelength, refractive index, and how it scatters the incident excitation. Raman scattering will occur throughout the entire excitation volume and simply measuring the Raman spectrum from this excitation would, therefore, result in spectral contributions from the entire volume with limited axial (Z-axis) discrimination.

Confocal Pinhole: Function of the pinhole in a confocal microscope. Confocal Microscopy Article.

Figure 1: Role of the confocal pinhole in a Raman microscope. (a) representation of the excitation 3D point spread function, (b) excitation volume, (c) Raman scatter originating from above the focal plane is rejected by the confocal pinhole, (d) Raman scatter originating from below the focal plane is rejected by the confocal pinhole, (e) Raman scatter originating from the focal plane is passed through the pinhole and is detected.

 

Role of the Confocal Microscope Pinhole

The purpose of the confocal microscope’s pinhole is to spatially filter the analysis volume so that the Raman scatter is detected from the focal plane only and its operation is illustrated in Figures 1b-e. Raman scatter that originates either above (1c) or below (1d) the focal plane is not brought to a focus in the confocal plane and is subsequently blocked by the confocal pinhole and not detected. In contrast, Raman scatter that originates from the focal plane is brought to a focus in the confocal plane, passing through the pinhole and is detected. This is the meaning of the word confocal; to share the same focal point, and Raman scatter from inside the excitation focus will also be in focus at the pinhole.

 

Optical Sectioning & Depth Profiling

The greatest advantage of using a confocal pinhole is the axial (along the Z-axis) resolution it provides. The pinhole limits the detected Raman scatter to a thin volume slice centred on the focal plane. The microscope can, therefore, be focused to the depth of interest inside a sample and the Raman spectrum measured from around the chosen focal plane only. By scanning the microscope stage across the lateral (X-Y) plane, a 2D Raman image of the focal plane region, an optical section, can be created which enables the chemical composition deep inside a sample to be imaged non-destructively. The pinhole is essential for this, as without it the out of focus Raman scatter would also be detected resulting in a blurry image with poor axial resolution; the pinhole increases the image contrast and improves the axial resolution.

The microscope stage can also be scanned along the Z- axis to change the depth of the focal plane within the sample. The variation in the Raman spectrum can be measured as a function of Z to generate a depth profile, showing how the chemical composition changes axially through the sample. This is particularly useful for analysing multilayer samples such as composite plastics as shown in Figure 2.  The PET and PVC polymers have unique Raman spectra and the Raman depth profile can identify the discrete layers within the PET-PVC-PET polymer stack.

axial spatial resolution

Figure 2: Raman depth profile of a multilayer polymer sample comprised of a PET-PVC-PET stack measured using a 532 nm laser and a 100x 0.90 NA objective. As the pinhole diameter is decreased from 100 μm to 25 μm the layer discrimination improves due to improved axial resolution.

 

Pinhole Size & Axial Resolution

Figure 2 contains two images labelled 25 µm and 100 µm which refers to the diameter of pinhole used for each measurement. As the diameter of the pinhole is decreased it becomes increasingly effective at blocking the out of focus scatter (increased confocality) and the effective axial resolution improves. This can clearly be seen in Figure 2; the 100 μm depth profile is blurred with poor discrimination between the polymer layers while the 25 μm profile is much sharper due to improved axial resolution. Using narrow pinhole diameters, axial resolutions of < 1 µm can be achieved.  The trade-off with narrowing the pinhole diameter is that the throughput of the microscope is significantly lowered and measurements will therefore take longer due to decreased Raman scatter intensity at the detector. Due to this trade-off, most Raman microscopes use a variable diameter confocal pinhole enabling the microscope mode to be adjusted from high confocality / low throughput to non-confocal / high throughput depending on the application.

 

Lateral Resolution & Contrast

The confocal pinhole can in principle also improve the lateral (the X-Y plane) diffraction limited resolution of the microscope due to the convolution of the excitation PSF with the pinhole aperture. There are several ways to define the lateral resolution but the most useful when comparing conventional and confocal microscopes is the FWHM of the effective PSF (convolution of the excitation and detection PSFs) of each microscope. A comparison of the width of the effective PSF of a conventional and confocal microscope with an infinitely small pinhole diameter is shown in Figure 3; showing the maximum possible resolution improvement of ~40% that can be achieved using a pinhole.

An infinitely small pinhole is of course not realistic and the resolution improvement will be less than this in practice. Achieving an improvement beyond that of a diffraction limited conventional microscope is therefore possible but the pinhole needs to be set to one of its smallest diameters at the significant cost of low throughput.

Confocal Microscope: Simulaation of the effective PSF of a conventional and confocal microscope in the X-Y plane with 532 nm excitation and a 100x 0.9 NA objective.

Figure 3: Simulation of the effective PSF of a conventional and confocal microscope in the X-Y plane with 532 nm excitation and a 100x 0.9 NA objective. The simulation assumes both microscopes are diffraction limited and an infinitely small pinhole diameter.

In real world samples the lateral resolution is frequently limited by poor image contrast rather than the diffraction-limited optics of the microscope; and the true advantage the pinhole provides for lateral resolution is improving the contrast of the images through stray-light suppression. Figure 4 shows a Raman image of polystyrene spheres on a silicon substrate and the pronounced improvement in the visualisation of the beads as the pinhole diameter is decreased is evident. The ability of the pinhole to block out of focus scatter and other unwanted background light, such as fluorescence, decreases the background and increases the image contrast; improving the effective lateral resolution dramatically.

Confocal Microscope : Improvement in Lateral Resolution by Changing Pinhole Size

Figure 4: Raman surface profile of 3 μm polystyrene beads on a silicon substrate measured using a 532 nm laser and 100x 0.90 NA objective. As the pinhole diameter is increased the contrast and resolution are improved.

 

RELATED PRODUCTS

RMS1000

Multimodal Confocal Microscope

VIEW

RM5

Raman Microscope

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Spectral Resolution in Raman Spectroscopy Next Spatial Resolution in Raman Spectroscopy

RESOURCES

Tags:
  • Spectral School
  • RM5
  • RMS1000
  • Raman
Related Posts:

RMS1000 Raman Microscope

View more »

RM5 Raman Microscope

View more »
Suggested Reading:

Improving Axial Resolution and Spectral Sensitivity in 3D Confocal Raman Imaging Using an Immersion Objective Lens

View more »

What is Confocal Raman Microscopy?

View more »
Laser Spot Size

Laser Spot Size in a Microscope

View more »
Rayleigh Criterion

The Rayleigh Criterion for Microscope Resolution

View more »
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}