Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Infrared or Raman Spectroscopy?

  • August 29, 2023

KEY POINTS

  • Raman and infrared spectroscopy are complimentary vibrational spectroscopy techniques
  • They have different selection rules meaning they produce different spectra
  • To be Raman active there must be a change in polarisability
  • To be IR active vibrations there must be a change in dipole moment
Edit Content

Vibrational spectroscopy is an umbrella term used to describe Raman and infrared (IR) spectroscopy.

The two techniques collect information about how molecular bonds vibrate when interacting with light.  In IR spectroscopy, infrared light is absorbed by the molecule, and the molecule is excited directly to a higher vibrational energy level. Whereas in Raman spectroscopy, the molecule is irradiated and excited to a virtual energy state, it then relaxes to a different vibrational state, emitting a photon at a shifted wavelength from the incident photon, Figure 1.  

Raman and IR Jablonski Figure 1. Jablonski diagram showing the energy transitions in Raman and IR spectroscopy. 

Selection Rules – Infrared and Raman Spectroscopy   

To be IR active there must be change in dipole moment, to be Raman active there must be a change in polarisability.   

What is dipole moment? The dipole moment of a molecule refers to the separation of positive and negative charges within the molecule. A molecule with a non-zero dipole moment has an asymmetric charge distribution, resulting in a permanent dipole. The vibration causing a change in the dipole moment makes a specific mode IR active.  

What is polarisability? Polarisability refers to the ability of a molecule’s electron cloud to be distorted by an external electric field. When a molecule is subjected to an incident photon, the electric field associated with the photon induces an oscillation in the molecule’s electron cloud. When the molecule undergoes a vibrational or rotational transition, the distribution of electron density within the molecule changes, resulting in a change in polarisability. The vibration causing a change in the polarisability makes a specific mode Raman active.  

stretching vibrations

Figure 2. CO2 stretching vibrations for IR active vibrations (left) and Raman active vibrations (right) 

CO2 has 3 atoms, and it is a linear molecule, therefore, there are 3N-5 = 4 vibrational modes. Figure 2 shows the two of these vibrations, termed asymmetric and symmetric stretching, respectively.   

There is another form of vibration termed bending, here the bond angle changes during the vibration. There are four types of bending possible: wagging, twisting, scissoring, and rocking. An IR or Raman spectrum will be composed of bands caused by both stretching and bending vibrations. CO2 also has two bending vibrations; they have the same frequency and only differ in the direction they move, making them degenerate. These vibrations are IR active but since they are degenerate, they produce one peak in the IR spectrum of CO2.  

Which is better? Advantages & Limitations  

It’s not always obvious whether to use IR or Raman spectroscopy, especially when looking at complex samples, however, there are some general approaches that can be applied.

Water Content 

An advantage of Raman spectroscopy is when investigating samples containing water. H2O is a very weak Raman scatterer meaning there is no influence on the Raman spectrum from water. In contrast, hydroxyl groups absorb IR radiation strongly and can cause substantial issues when trying to analyse aqueous samples with IR spectroscopy.   

Fluorescence Interference  

Whilst Raman spectroscopy does not suffer from water interference, it can suffer significantly from fluorescence interference. Raman scattering is an inherently weak phenomenon, fluorescence is orders of magnitude stronger and can be induced in the sample, substrate, or optical elements from the Raman laser which can then obscure Raman bands. IR radiation will not induce fluorescence because it does not allow for electronic excitation.    

Sensitivity  

Sensitivity is always important when analysing samples, and of the two technique IR spectroscopy is generally more sensitive. However, both offer significant individual advantages in terms of sensitivity to specific functional groups. For example, Raman spectroscopy is especially sensitive to lattice vibrations in crystals for studying polymorphism, whilst IR spectroscopy is particularly sensitive to studying reaction intermediates in low concentrations.   

Simplicity  

Practically, an IR spectrometer is a simpler instrument. Raman measurements often require some testing to ascertain the best parameters for a sample, such as excitation source and grating selection. This is why IR spectrometers are commonly used in undergraduate chemistry laboratories whilst Raman spectrometers tend to be used in research settings. However, the advances of both instruments and their components over the past 20 years have increased the popularity and ease of use of the techniques. 

Conclusion

Raman and IR spectroscopy are both powerful techniques and offer rapid and non-destructive analysis in all application areas. Whilst there are some general recommendations that can be made over which technique to pick, in reality, samples are complex, and both can offer advantages. Their different selection rules make them truly complimentary techniques and when used together they provide full sample characterisation.  

RELATED PRODUCTS

IR5

FTIR Spectrometer

VIEW

RMS1000

Multimodal Confocal Microscope

VIEW

RM5

Raman Microscope

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Batch and Global Analysis of Fluorescence Lifetimes Next Raman, Photoluminescence, and PLIM Imaging Using the RMS1000 Confocal Microscope

RESOURCES

Tags:
  • Spectral School
  • IR5
  • RM5
  • RMS1000
  • FTIR
  • Raman
Suggested Reading:

No results found.

Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}