Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Metal Organic Framework as a Ratiometric Fluorescence Sensor for Hypochlorite and Ascorbic Acid

  • April 7, 2020
Edit Content

Hypochlorite (ClO–) is commonly used for disinfecting tap water, but its concentration needs to be monitored to make sure it is effective but not toxic. Researchers in Fujian, China, led by Rong Cao and Zu-Jin Lin, have developed a new method for sensing ClO– employing fluorescence spectroscopy and novel metal organic frameworks. The authors used an Edinburgh Instruments FS5 Spectrofluorometer to characterise and optimise the sensor’s response towards ClO– . They then employed this fluorescence sensor to detect ascorbic acid, an essential nutrient for the human body.

Metal organic frameworks (MOFs) are compounds containing metal ions and organic ligands arranged in a regular coordination network. They are useful in sensing applications since their porous structures enable the absorption of analytes of a particular size. Moreover, it is possible to employ a fluorescent MOF as a sensor if its photoluminescence properties change in the presence of the analyte. This idea has been previously exploited for ClO– detection, but always based on a single emission intensity. In this study, Zeng et al. propose a ratiometric fluorescence sensor to improve sensitivity and robustness. In a ratiometric fluorescence sensor, the intensities of two fluorescence signals with different responses to an analyte are measured. Using the ratio of two signals reduces the error in the measurement compared to a single emission sensor. 

Results

The authors synthesised a metal organic framework containing bipyridine-based BPyDC2− and H2N- BPyDC ligands as well as Eu(III) ions. The fluorescence emission spectrum from this MOF shows two components: BPyDC2− ligands contribute with a broad emission band in the blue whilst Eu(III) presents characteristic narrow bands in the red. The authors found that Eu(III) emission was practically independent of ClO– concentration, while the blue band was strongly dependent on it. Fast and accurate measurements performed in the FS5 Spectrofluorometer allowed the authors to establish a calibration curve based on the ratio between the two signals (Figure 1).

Fluorescence Sensor. Ratiometric Fluorescence: Figure 1. (a) Fluorescence emission spectra from the Eu/BPyDC MOF studied under different concentrations of hypochlorite, acquired in an FS5 Spectrofluorometer. (b) Ratiometric fluorescence calibration curve obtained from the data in (a).

Figure 1. (a) Fluorescence emission spectra from the Eu/BPyDC MOF studied under different concentrations of hypochlorite, acquired in an FS5 Spectrofluorometer. (b) Ratiometric fluorescence calibration curve obtained from the data in (a).

Zeng, et al. went a step further in their study and utilised their ClO– sensor for the detection of ascorbic acid. Ascorbic acid reacts with ClO– and therefore can return the sensor to its initial state. The authors found that upon addition of ascorbic acid, 471 nm fluorescence emission is recovered and it is possible to establish a calibration curve dependent on ascorbic acid concentration. Therefore, the system acts as an “on-off-on” sensor for ascorbic acid.

Further experiments helped establish the sensing mechanism, excluding energy transfer, inner filter effect, and oxidation of -NH2 groups as possible processes. Fluorescence lifetimes recorded in an Edinburgh Instruments FLS980 confirmed that the reason for the reduction in fluorescence is dynamic quenching (Figure 2). The authors hypothesise that quenching occurs due to hydrogen bonding between ClO– and the -NH2 groups in the metal organic framework. Ascorbic acid reacts with ClO– and gradually returns the fluorescence sensor to its initial “on” state. This is sketched in Figure 3.

Fluorescence Sensor. Ratiometric Fluorescence: Time-resolved photoluminescence decays from Eu/BPyDC MOF under different concentrations of hypochlorite, acquired in an FLS980 Photoluminescence Spectrometer.

Figure 2. Time-resolved photoluminescence decays from Eu/BPyDC MOF under different concentrations of hypochlorite, acquired in an FLS980 Photoluminescence Spectrometer.

 

Proposed mechanism for the “on-off-on” fluorescence sensor.

Figure 3. Proposed mechanism for the “on-off-on” fluorescence sensor. In the “on” state, both the pyridine-containing units and the Eu(III) ions emit fluorescence. Hypochlorite enters the MOF cavities and forms hydrogen bonds with the BPyDC units, quenching their fluorescence. Ascorbic acid removes ClO– returning the sensor to its “on” state.

Conclusions

Research-grade fluorescence spectrometers such as the Edinburgh Instruments FS5 play a key part in the design and optimisation of fluorescence sensors. The FS5 offers both spectral and time-resolved measurements, which are essential for understanding the sensing mechanism. In their publication, Zeng et al. make excellent use of Edinburgh Instruments equipment for the development of a new ratiometric fluorescence sensor using metal organic frameworks.

Link to Article: https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b02251

Figures reprinted with permission from Inorg. Chem. 2019, 58, 13360. Copyright © 2019, American Chemical Society.

Find out More

If you have enjoyed this application note from Edinburgh Instruments about Metal Organic Frameworks as a Ratiometric Fluorescence Sensor for Hypochlorite and Ascorbic Acid and would like to be the first to know about our future research articles, please take a moment to join us on social media and sign up to our infrequent eNewsletter via the link below.

Alternatively, if you would like to find out more information about our FS5 Spectrofluorometer, which has been used in this research, please don’t hesitate to get in touch with a member of our team today.

RELATED PRODUCTS

FS5

Spectrofluorometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Enhanced Solar Cell Performance with Pt-based ‘Roller-Wheel’ Molecules; Utilising Transient Absorption for Excited State Energies and Lifetimes Next Measuring the Two-Photon Absorption Spectra of Organic Solutions Via Two-Photon Induced Fluorescence Spectroscopy

RESOURCES

Tags:
  • Research Highlight
  • Photochemistry
  • FS5
  • Photoluminescence
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}