Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

What are Absorption, Excitation and Emission Spectra?

  • July 13, 2021
Edit Content

In this Spectral School tutorial, the differences between molecular absorption, excitation and emission spectra are explained.

 

Absorption Spectra

anthracene absorption spectrum

Figure 1: Absorption spectrum of anthracene in cyclohexane measured using the FS5 Spectrofluorometer. Experimental parameters: Δλ = 1 nm.

Absorption spectra (also known as UV-Vis spectra, absorbance spectra and electronic spectra) show the change in absorbance of a sample as a function of the wavelength of incident light (Figure 1), and are measured using a spectrophotometer. Absorption spectra are measured by varying the wavelength of the incident light using a monochromator and recording the intensity of transmitted light on a detector. The intensity of light transmitted through the sample, ISample, (such as an analyte dissolved in solvent) and the intensity of light through a blank, IBlank, (solvent only) are recorded and the absorbance of the sample calculated using:

The absorbance is linearly proportional to the molar concentration of the sample; which enables the concentration of the sample to be calculated from the absorption spectrum using the Beer-Lambert Law.

Emission Spectra: spectrophotometer diagram

Figure 2: Schematic of the measurement of absorption spectra in a spectrophotometer.

 

Excitation Spectra

Emission Spectra: anthracene excitation spectrum

Figure 3: Fluorescence excitation spectrum of anthracene in cyclohexane measured using the FS5 Spectrofluorometer. Experimental parameters: λem = 420 nm, Δλem = 1 nm, Δλex = 1 nm.

Fluorescence excitation spectra show the change in fluorescence intensity as a function of the wavelength of the excitation light (Figure 3), and are measured using a spectrofluorometer. The wavelength of emission monochromator is set to a wavelength of known fluorescence emission by the sample, and the wavelength of the excitation monochromator is scanned across the desired excitation range and the intensity of fluorescence recorded on the detector as a function of excitation wavelength. If the sample obeys Kasha’s Rule and Vavilov’s Rule then the excitation spectrum and absorption spectrum will be identical (compare Figures 1 and 3). Excitation spectra can therefore be thought of as fluorescence detected absorption spectra.

Emission Spectra: excitation spectra spectrofluorometer diagram

Figure 4: Schematic of the measurement of excitation spectra in a spectrofluorometer.

 

Emission Spectra

anthracene emission spectrum

Figure 5: Fluorescence emission spectrum of anthracene in cyclohexane measured using the FS5 Spectrofluorometer. Experimental parameters: λex = 340 nm, Δλex = 1nm, Δλem= 1 nm

Fluorescence emission spectra show the change in fluorescence intensity as a function of the wavelength of the emission light (Figure 5), and are measured using a spectrofluorometer. The wavelength of excitation monochromator is set to a wavelength of known absorption by the sample, and the wavelength of the emission monochromator is scanned across the desired emission range and the intensity of the fluorescence recorded on the detector as a function of emission wavelength.

emission spectra spectrofluorometer diagram

Figure 6: Schematic of the measurement of emission spectra in a spectrofluorometer.

 

RELATED PRODUCTS

DS5

Dual Beam UV-Vis Spectrophotometer

VIEW

FLS1000

Photoluminescence Spectrometer

VIEW

FS5

Spectrofluorometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous What is the Stokes Shift? Next Excitation Correction in a Fluorescence Spectrometer

RESOURCES

Tags:
  • Spectral School
  • FLS1000
  • FS5
  • Photoluminescence
Suggested Reading:

What is the Difference between Luminescence, Photoluminescence, Fluorescence, and Phosphorescence?

View more »

What is the Stokes Shift?

View more »

What is a Spectrometer?

View more »
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}