Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Measuring Fluorescence and Phosphorescence Spectra at Low Temperature Using the FLS1000 Photoluminescence Spectrometer

  • June 30, 2021
Edit Content

Fluorescence is the radiative relaxation that an excited molecule undergoes when it drops back from a singlet excited state (e.g., S1) to its electronic ground state (S0) after photoexcitation (Figure 1). A competing process is the radiationless transition from S1 to a triplet excited state (T1) through intersystem crossing (ISC). From T1, the excited molecule can return to S0 radiatively. This process is known as phosphorescence and although both transitions (S1→T1 and T1→S0) are “forbidden“ in terms of quantum mechanics principles, they still occur due to spin-orbit coupling. Measuring the spectral profile of the fluorescence and phosphorescence transitions of a molecule reveals important information on its electronic structure and enables the S1 – T1 energy splitting to be calculated.

Figure 1: A Jablonski diagram for an excited molecule. The radiative (fluorescence and phosphorescence) and non-radiative (vibrational relaxation and ISC) processes are shown.

In this technical note, an Edinburgh Instruments FLS1000 Photoluminescence Spectrometer was used to acquire the fluorescence and phosphorescence spectra of a fluorescent emitter at 100 K. The note guides the reader through the recommended measurement and data analysis sequence to obtain accurate photoluminescence (PL), fluorescence and phosphorescence spectra, and a summary of the procedure that will be followed is shown in Figure 2.

Figure 2: The steps followed for the acquisition of the fluorescence and phosphorescence spectra.

Experimental Setup

Measurements were carried out using a FLS1000 that was equipped with a 450 W continuous Xenon lamp and a VPL-375 variable pulse length laser diode, as excitation sources. The fluorescent emitter was held in an Optistat DN liquid nitrogen cryostat (Figure 3), whilst all data were acquired using a PMT-980 equipped with a N-G11 gating circuit. The analysis of the acquired spectra was performed in Fluoracle®, the FLS1000’s operating software.

Figure 3: The FLS1000 photoluminescence spectrometer with the Optistat DN Cryostat.

Measuring the Low-Temperature Photoluminescence Spectrum

Measuring the spectra of both, fluorescence and phosphorescence, is important depending on the potential application. However, at room temperature it is challenging for phosphorescence to be measured as T1 is depopulated by non-radiative relaxation. By cooling down the sample the non-radiative relaxation rate is decreased, and therefore, the phosphorescence can be observed. The temperature of the cryostat was set to 100 K in Fluoracle® and the PL emission spectrum of the sample was acquired (Figure 4).

Figure 4: The PL spectrum at 100 K. λex=375 nm (Xenon lamp), Δλex=1 nm, Δλem=1.5 nm, step=2 nm, dwell time=0.2 s.

Measuring the Low-Temperature Phosphorescence Spectrum

In this step, the phosphorescence of the sample was acquired at 100 K by time-gating the photomultiplier tube (PMT) of the FLS1000. A detailed technical note focused on the principles of the PMT time-gating in FLS1000 can be found here.

Time-gating the PMT enables the separation of phosphorescence from fluorescence as the photodetector can be switched off during the fluorescence emission so that only the phosphorescence is acquired. The PMT time-gating parameters can be setup independently for each pulsed excitation source installed in the FLS1000 through the “Setup” menu. Here, a VPL-375 diode was used as the excitation source and the gating parameters for this source are accessed by selecting Setup → EPL (MCS) Laser Setup, in Fluoracle® (Figure 5a). In EPL (MCS) Laser Setup window the repetition rate of the excitation source can be modified (red frame in Figure 5b) and time-gating can be enabled by checking the “Gating On” tick box (green frame). The “Delay” (purple frame) is defined as the time after the start of the MCS acquisition window when the PMT turns ON and “Gate Width” (blue frame) indicates how long the PMT is ON for the data acquisition.

Figure 5: Time-gating user interface in Fluoracle®.

To find the correct gating parameters a PL decay was first measured using the VPL-375 laser with the gating disabled which allowed the location and duration of fluorescence to be observed. For phosphorescence spectra measurements the repetition rate of the VPL-375 and the pulse width were set to 10 Hz and 1 ms, respectively. The time-gating parameters were then set in Fluoracle® so that the PMT-980 was switched ON 5 ms (Delay) after excitation by the VPL-375 which ensured that the fluorescence had completely decayed, and remained ON (Gate Width) for 80 ms in total. The gated phosphorescence spectrum was acquired as shown in Figure 6. It is worth mentioning that the VPL is an ideal excitation source for measuring weak phosphorescence spectra due to the high excitation power it can deliver.

Figure 6: Gated phosphorescence spectrum at 100 K. λex=375 nm (VPL-375), Δλem=3 nm, step=2 nm, dwell time=10 s.

At this point, it should be noted that the phosphorescence lifetime at 100 K is ~ 200 ms (see Figure 7) and the chosen 10 Hz repetition rate therefore does not allow the phosphorescence to completely decay prior to re-excitation. This incomplete decay has no negative effect when measuring the phosphorescence spectrum and is actually recommended in order to acquire the phosphorescence spectrum more rapidly and improve the signal-to-noise ratio.

Obtaining the Low-Temperature Fluorescence Spectrum

The low-temperature PL (Figure 4) and phosphorescence (Figure 6) have now been acquired. The simplest way to obtain the corresponding low-temperature fluorescence spectrum is to subtract the phosphorescence spectrum from the PL spectrum. However, the two spectra were measured using different acquisition parameters and therefore have arbitrary relative intensities. The spectra must first be correctly scaled using the ratio of the fluorescence to phosphorescence at a chosen wavelength. This ratio can be calculated by measuring the PL decay and integrating the regions of fluorescence and phosphorescence.

The PL decay was acquired at an emission wavelength of 482 nm (peak of the phosphorescence) using the VPL-375 and is shown in Figure 7. The repetition rate of the VPL-375 was set to 0.1 Hz (10 s) to ensure that the phosphorescence has time to completely decay which is essential for accurate integration and scaling.

The spike at 0 ms is the fluorescence decay which occurs almost instantaneously on this timescale and the longer component is the phosphorescence. The ratio between the fluorescence and phosphorescence at 482 nm can be calculated by integrating the area of the fluorescence (green) and phosphorescence (pink), and therefore, Phosph/Fluor=0.241.

Figure 7: Lifetime decay at low temperature using the VPL-375 as excitation source.

To scale the spectra the PL and phosphorescence were first normalised to the decay acquisition wavelength (482 nm) by selecting Data → Normalise → At Wavelength, in Fluoracle®. The phosphorescence spectrum is then multiplied by the Phosphor/Fluor ratio of 0.241 (Data → Scale) to correctly scale its intensity relative to the PL spectrum. The normalised PL, phosphorescence and scaled phosphorescence are shown in Figure 8.

Figure 8: Normalised PL, phosphorescence and scaled phosphorescence by a factor of 0.241.

Now that PL and phosphorescence are correctly scaled, the low-temperature fluorescence spectrum can be obtained (Figure 9, in blue) by subtracting the scaled phosphorescence spectrum from the PL spectrum using Data → Combine → Subtract, in Fluoracle®.

Figure 9: PL, fluorescence and phosphorescence spectra.

Conclusion

This technical note detailed the procedure for obtaining the fluorescence and phosphorescence spectra of a fluorescent emitter at low temperature, by using a FSL1000 Photoluminescence Spectrometer equipped with a gated PMT and a cryostat accessory. All data acquisition and analysis were conducted in Fluoracle®.

RELATED PRODUCTS

FLS1000

Photoluminescence Spectrometer

VIEW

FS5

Spectrofluorometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Imaging Charge Extraction in VACNT Perovskite Solar Cells using Spectral and Lifetime Confocal Photoluminescence Mapping Next Molecular Terahertz Laser

RESOURCES

Tags:
  • Technical Notes
  • FLS1000
  • FS5
  • Photoluminescence
Technical Note:
Download PDF
Suggested Reading:

Fluorescence, Delayed Fluorescence and Phosphorescence Spectra of a TADF Emitter Measured using the FLS1000 with a VPL laser and Gated PMT Detector

View more »
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}