Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Proton-Coupled Electron Transfer (PCET); Spectral and Kinetic Transient Absorption Analysis of Acridine Orange with Tri-Tert-Butylphenol

  • January 14, 2019
Edit Content

Understanding fundamental photo-induced proton-coupled electron transfer (PCET) reactions of small molecules is central to research ranging from solar fuels, biological signalling, and organic electronics. By combining spectral and kinetic information of the photo-generated excited states and radical species present, researchers are able to elucidate the PCET reaction mechanisms involved in these applications. The Edinburgh Instruments LP Transient Absorption Spectrometer is the world’s only commercial system capable of recording instantaneous spectral information utilising an ICCD camera, while then easily being able to switch to measuring kinetic data on a PMT detector – all under software control. It was used to carry out the research in this application note.

Research

Researchers at the University of North Carolina, Chapel Hill, in the lab of Prof. Jillian L. Dempsey, have utilised an Edinburgh Instruments LP laser flash photolysis spectrometer equipped with an ICCD camera and PMT detector to record the spectral and kinetic PCET reaction mechanisms of a famous fluorophore, acridine orange (AO), with  tri-tert-butylphenol (ttbPhOH) (J. Am. Chem. Soc. 2014, 136, 12221-12224).

PCET mechanistic pathways

Figure 2: PCET mechanistic pathways between photo-excited acridine orange (AO) and tri-tert-butylphenol (ttbPhOH).

Diagram forming part of Proton-Coupled Electron Transfer (PCET) Application NoteAcridine orange is well known for its ability to stain DNA and RNA in cellular imaging, however, it also posses efficient intersystem crossing and a long-lived triplet state with a well defined radical cation; ideal for monitoring photo-induced PCET reactions. Phenols, such as tri-tert-butylphenol, have long been studied given their close resemblance to tyrosine and its importance in photosystem II solar harvesting, making this a perfect combination for fundamental photochemistry studies.

Photo-induced transient absorption spectra of 40 μM acridine orange during the PCET mechanism with 1 mM tri-tert-butylphenol (ttbPhOH) in acetonitrile; excitation was at 425 nm.

Figure 3: Photo-induced transient absorption spectra of 40 μM acridine orange during the PCET mechanism with 1 mM tri-tert-butylphenol (ttbPhOH) in acetonitrile; excitation was at 425 nm.

The defined spectral features (Figure 3) of each species during the PCET reaction with acridine orange is easily recorded using the ICCD camera, even noting the bathochromic shift from the triplet excited state (3AO) at 410 nm to the neutral acridine radical (AOH*) at 425 nm. Further concentration studies show drastic changes in lifetime, with increased tritert-butylphenol (ttbPhOH) quenching the triplet acridine orange excited state (Figure 4).

Triplet lifetime of acridine orange in the presence of increased concentrations of tri-tert-butylphenol (ttbPhOH) in acetonitrile; lifetimes were recorded at 560 nm.

Figure 4: Triplet lifetime of acridine orange in the presence of increased concentrations of tri-tert-butylphenol (ttbPhOH) in acetonitrile; lifetimes were recorded at 560 nm.

Conclusion

Utilising model compounds with distinguishable transient spectral features facilitates fundamental understandings of PCET events that could benefit new device designs for solar harvesting and better insights into biological signalling. The Edinburgh Instruments LP980 Spectrometer, with both ICCD spectral and PMT kinetic detectors is impeccably suited for these measurements, among many more.

Link to Article: https://pubs.acs.org/doi/10.1021/ja505755k

Figures reprinted with permission from J. Am. Chem. Soc. 2014, 136, 12221-12224. Copyright 2014 American Chemical Society.

RELATED PRODUCTS

LP980

Transient Absorption Spectrometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Tuning the Photoluminescence of Graphene Oxide Next Electroluminescence and Photoluminescence Spectroscopy of a Phosphorescent Organic Light Emitting Diode (PhOLED)

RESOURCES

Tags:
  • Research Highlight
  • Photochemistry
  • LP980
  • Transient Absorption
Research Highlight:
Download PDF
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}