Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

Measurement of Time-Resolved Photoluminescence in the Microsecond Range

  • September 11, 2024
Edit Content

Edinburgh Instruments offers two types of photon-counting methods for time-resolved photoluminescence: Time-Correlated Single Photon Counting (TCSPC) for luminescence lifetimes between 5 ps and 50 µs, and Multi-Channel Scaling (MCS) for lifetimes between 1 µs and 10 s. 

The working principle of TCSPC is explained in out previous technical note, “What is TCSPC?”. In simple terms, a histogram of signal photon counts as a function of time is built from a series of START and STOP pulses that are input to the TCSPC electronics. Typically the START pulse is an electrical trigger synchronous to the optical excitation pulse, and the STOP pulse is caused by a single photon reaching the detector. The opposite case is known as reverse TCSPC, but for simplicity we will only focus on forward TCSPC here. The time between the START and STOP pulses is recorded accurately by the electronics, which acquire millions of START-STOP sequences in order to build a photoluminescence decay (Figure 1).Time-Resolved Photoluminescence Schematic

Figure 1 (left):  Schematic of TCSPC measurement. A source produces optical excitation pulses at a fixed repetition rate, and at the same time triggers the START of the TCSPC electronics. The excitation intensity must be fine-tuned to obtain a very low rate of detected photons (this is the STOP rate). The START-STOP delay is recorded by the electronics and a histogram of photon counts vs time is built.

Figure 2 (right): The figure on the right shows the MCS measurement schematic. Emission photons are counted and assigned to time bins. The procedure is repeated after each excitation pulse to build a histogram of photon counts vs time, with the excitation pulse at the start.

Edinburgh Instruments spectrometers can be configured with TCSPC, MCS, or both; depending on your time resolution requirement. However configuring your instrument for fluorescence lifetime is not as simple as choosing the acquisition electronics. The measurable range of lifetimes depends not only on the electronics but also on the excitation source and the detector used. The width of the excitation pulse and the detector response time have a major effect on the instrument response function (IRF). These considerations are particularly important when the samples studied have multiple lifetimes across the ns and μs ranges; or when their lifetime is of the order of 500 ps – 5 μs, the crossover region between TCSPC and MCS.

In this technical note we present different examples of source and detection method combinations and show how the choice of configuration affects the measurement quality. Focusing on the FS5 and FLS1000 spectrometers, we introduce the new capability of EPL and EPLED pulsed diodes as MCS sources, which helps bridge the gap between TCSPC and MCS.

RELATED PRODUCTS

FLS1000

Photoluminescence Spectrometer

VIEW

FS5

Spectrofluorometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Raman and Photoluminescence Characterisation of GaN Next Front-illuminated CCD or Back-Illuminated CCD: What is the Best Choice for Your Raman Microscope?

RESOURCES

Tags:
  • Technical Notes
  • TCSPC
  • FLS1000
  • FS5
Technical Note:
Download PDF
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}