Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  1. Home
  2. Blog Post
  3. Troubleshooting Measurements of Fluorescence Spectra

BLOG

Troubleshooting Measurements of Fluorescence Spectra

  • August 9, 2018
Edit Content

Acquiring and interpreting steady state fluorescence spectra is not always straightforward. Below we offer some advice on commonly encountered problems to help you optimise the operation of your Edinburgh Instruments spectrometer.

Fluorescence Spectroscopy: Troubleshooting Measurements of Fluorescence Spectra

What to do if your Fluorescence Spectra are Distorted, Show Unexpected Peaks or Steps

  • If you are experiencing problems with your fluorescence spectra make sure that the monochromator filter wheels are enabled. Monochromators transmit wavelengths at multiples of their selected wavelength and these need to be filtered out. For example, scattered excitation wavelength of 300 nm entering the emission monochromator will result in some light detected at 600 nm. Edinburgh Instruments spectrometers have automatic filter wheels to remove these second-order effects, but they can be appreciated  if the filter wheel is disabled in the software.
  • Make sure that spectral correction is active in the control software. Edinburgh Instruments fluorescent spectrometers allows automatic correction of spectra accounting for detection sensitivity  and excitation light intensity.
  • Raman peaks from the solvent or substrate can often be appreciated in emission fluorescence spectra. A quick way to identify a Raman signal is to vary the excitation wavelength: the Raman peak should shift in the same direction. The Raman signal should also be present in a “blank” measurement of the solvent or substrate.
  • Check for inner filter effect.

What to do if the Fluorescence Emission is too low

  • If the fluorescence emission is too low, check the alignment of the sample by the visual inspection of where the beam hits the sample. This is important especially for solid samples (see figure above). Some sample holders allow adjusting the position and monitoring the fluorescence signal simultaneously.
  • Reduce the concentration of the sample to check for inner filter effect.
  • Increase the spectral bandpass. Increase the excitation bandpass if studying emission, and vice versa, to avoid losing resolution of your measured spectrum.
  • If measuring low-emitting samples, the integration time must be increased to obtain good-quality data. It is recommended to use a shorter dwell time (0.1 or 0.2 s) and a higher number of scans in order to see the overall spectrum and to correct for potential drifts in experimental conditions.

Detector Saturation

At high intensities, PMT detectors are not able to count all photons and the sensitivity of the instrument stops being linear. This is known as detector saturation. Although it may not damage the detector (at least at moderate intensities), it results in spectral distortion and must therefore be avoided. The saturation limit depends on the type of PMT detector. A typical threshold for standard visible PMT’s is ~ 1.5×10⁶ cps.

Some tips on avoiding saturating are listed below:

  • Check the signal level with excitation and emission wavelengths set to maximum signal intensity. Start with narrow spectral bandwidths and then increase as needed.
  • Some spectrometers such as the FLS1000 feature on attenuator for the excitation source, which enables to reduce the intensity without varying the bandpass.
  • Saturation effects can be investigated by acquiring spectra with varying dwell times. The peak signal should be linearly dependent to the dwell time.

Fluorescence Spectroscopy Instrumentation

If you are looking to measure spectra fluorescence, why not view our full range of fluorescence spectroscopy instrumentation, or if you have questions regarding fluorescence spectroscopy and how we can help you with your work, simply contact sales@edinst.com.


Be the first to see posts on fluorescence spectroscopy by joining us on social media or signing up to our infrequent newsletter via the button below and we will keep you up-to-date with all our latest news and articles.

Edinburgh Instruments: Fluorescence Spectroscopy Solutions for Research.

RESOURCES

Tags:
  • Frequently Asked Questions
  • FLS1000
  • FS5
  • Photoluminescence
Share:
PrevPrevious
NextNext

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}