Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  1. Home
  2. Blog Post
  3. Publication Highlight: Origin of Positive Ageing in Quantum Dot Light Emitting Diodes (QDLED)

BLOG

Publication Highlight: Origin of Positive Ageing in Quantum Dot Light Emitting Diodes (QDLED)

  • August 22, 2018
Edit Content

Congratulations to our customer, Professor Shuming Chen and his research team at the Southern University of Science and Technology, Shenzhen for the acceptance of their paper “Origin of Positive Ageing in Quantum Dot Light Emitting Diodes (QDLED)” in Advanced Science.1

Prof. Chen’s research area involves the development of new, more efficient quantum dot light emitting diodes (QDLED). Quantum Dot LEDs are a promising LED technology for next generation displays due to their attractive optoelectronic properties and solution processability. In order to further improve the efficiency and stability of QDLEDs, the operating and ageing mechanisms in QDLEDs need to be better understood. Quantum Dot LEDs have previously been observed to exhibit a phenomena known as positive ageing, where the efficiency of the QDLED increases over a period of time after it has been fabricated.2 In this paper Prof. Chen’s team investigated the origin of this positive ageing mechanism with the aid of photoluminescence spectroscopy using an FS5 Spectrofluorometer equipped with an integrating sphere and TCSPC electronics.

Spectrofluorometer | Quantum Dot LED
Figure 1: FS5 Spectrofluorometer

They found that the positive ageing behaviour depended on the choice of metal for the cathode, with aluminium (Al) cathodes exhibiting the greatest positive ageing response. Using X-Ray Photoelectron Spectroscopy they showed that during QDLED ageing, a layer of AlOx formed between the Al cathode and the ZnMgO electron transport layer. Through current voltage characterisation they demonstrated that this AlOx layer improves electron injection into the QDLED which is one of the mechanisms responsible for the efficiency enhancement during positive ageing. In addition, they hypothesised that the AlOx layer may also supress exciton quenching during Quantum Dot LED operation. To investigate this hypothesis they used an Edinburgh Instruments FS5 Spectrofluorometer to measure the steady state and time-resolved photoluminescence from the QDLEDs.

Photoluminescence Measurements of Quantum Dot Light Emitting Diodes (QDLED) | Quantum Dot LED
Figure 2: Photoluminescence measurements of QDLEDs measured using the FS5 Spectrofluorometer. (a) Steady state photoluminescence of QDLEDs without Al cathode. (b) Steady state photoluminescence of QDLEDs with Al cathode. (c) Time-resolved photoluminescence of QDLEDs measured using TCSPC. (d) Mechanism of radiative recombination enhancement through exciton quenching suppression. Figure reproduced from Adv.Sci. 2018, 1800549 under a creative commons licence CC BY 4.0.1

Steady state photoluminescence (PL) spectra of the QDLEDs are shown in Figure 2 without (a) and with an Al cathode (b). To ensure that all PL emission from each QDLED was collected, the PL spectra were measured using the SC-30 Integrating Sphere Module for the FS5 (Figure 3, below), which allows the PL emission intensity of the various QDLEDs to be accurately compared. It can be seen from Figure 2a that in the absence of the Al cathode the PL intensity either decreases or is unchanged after 5 days of ageing. Contrast this to Figure 2b where the PL intensity is significantly increased after the ageing, which supports the hypothesis that the AlOx layer supresses exciton quenching and increases the radiative efficiency of the QDLED.

Integrating Sphere used within research for Positive Ageing in Quantum Dot Light Emitting Diodes (QDLED) | Quantum Dot LED

In order to further support this argument, the PL decays of the Al cathode QDLEDs were measured on the FS5 using Time-Correlated Single Photon Counting (TCSPC) as shown in Figure 2c. The PL decays were fit with a three component exponential and the weighted average lifetime of the decay calculated. The PL lifetimes of the blue, green and red QDLEDs increased from 3.68, 4.87 and 9.12 ns to 4.30, 5.31 and 10.26 ns after 5 days of ageing. The enhancement in PL intensity together with this enhancement in PL lifetime confirms that that the presence of the interfacial AlOx layer supresses exciton quenching and enhances the radiative efficiency of the QDLEDs.

The mechanism proposed for this enhancement by Prof. Chen’s team is illustrated in Figure 2d. In fresh QDLEDs, electrons migrate from the Al cathode and become trapped in the ZnMgO layer and these trapped electrons can quench the excitons inside the QDLED and reduce the radiative efficiency. In aged QDLEDs an AlOx interfacial layer is formed which blocks the migration and trapping of the electrons. The reduction in trapped electrons suppresses the exciton quenching, resulting in an enhancement to the radiative efficiency and improved QDLED performance.

Download the full paper: Origin of Positive Ageing in Quantum Dot Light Emitting Diodes (QDLED).

References

  1. Q. Su, Y. Sun, H. Zhang, S. Chen, Origin of Positive Ageing in Quantum‐Dot Light‐Emitting Diodes, Adv. Sci. 1800549 (2018)
  2. K. P. Acharya, A. Titov, J. Hyvonen, C. G. Wang, J. Tokarz, P. H. Holloway, High Efficiency Quantum Dot Light Emitting Diodes from Positive Ageing, Nanoscale, 9, 14451 (2017)

Fluorescence Spectroscopy Instrumentation

For further information about Quantum Dot LEDs or our range of fluorescence spectroscopy instrumentation or to find out how they can be used for your own research into quantum dot light emitting diodes, please contact us. We’d be delighted to help.

Stay In Touch

Stay up-to-date with the latest news, applications, and product information from Edinburgh Instruments by following us on social media, and sign-up to our infrequent newsletter via the red sign-up button below.

RELATED PRODUCTS

RESOURCES

Tags:
  • Research and Publications
Share:
PrevPrevious
NextNext

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}