Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  1. Home
  2. Blog Post
  3. MOFs JACS Publication: Excited-State Electronic Properties in Zr-Based Metal Organic Frameworks as a Function of…

BLOG

MOFs JACS Publication: Excited-State Electronic Properties in Zr-Based Metal Organic Frameworks as a Function of a Topological Network | Photophysics

  • September 13, 2018
Edit Content

Professor Pravas Deria at Southern Illinois University, recently had a paper on Metal Organic Frameworks (MOFs) published in the Journal of the American Chemical Society (JACS).

The paper; titled; ‘Excited-State Electronic Properties in Zr-Based Metal Organic Frameworks as a Function of a Topological Network’, investigated the role that topology plays in the photophysics of metal organic frameworks with the aid of the FS5 Spectrofluorometer and the Lifespec II Fluorescence Lifetime Spectrometer. The article below introuces the research done by Prof. Deria and his team, in collaboration with researchers from Kyoto University and the National Renewable Energy Laboratory.

Left: FS5 Spectrofluorometer; Right: Fluorescence Lifetime Spectrometer used in research for metal organic frameworks (MOFS)
Figure 1: FS5 Spectrofluorometer (left) and LifeSpec II Fluorescence Lifetime Spectrometer.

 

Metal Organic Frameworks (MOFs) are a class of compounds made from metal ions coordinated to organic ligands to produce complex 2D or 3D structures (Figure 2). MOFs are currently being designed and investigated for a wide range of important technological applications including carbon capture, catalysis and hydrogen storage. Another promising application of metal organic frameworks, which is the focus of Prof. Deria’s paper, is light harvesting; where the MOF is used to absorb photons of light and this energy utilised for initiating photochemical reactions or charge generation in photovoltaics. MOFs are promising light harvesting materials due to their unparalleled flexibility in design, with the topology of the MOF influencing its photophysical properties. To successfully design MOFs with the desired properties it is crucial to understand the role that the topology of the MOF has on the photophysics and establish structure property relationships. To aid with this understanding, Prof. Deria’s team investigated two zirconium based metal organic frameworks, named NU-901 and NU-1000, that are chemically identical but have different topologies (see Figure 2) in order to investigate the influence of topology on the photophysics of the MOF.

Topology of Metal Organic Frameworks
Figure 2: Structures of the NU-901 and NU-1000 Metal Organic Frameworks. Reprinted with permission from J. Am. Chem. Soc. 2018 140 (33) 10488-10496. Copyright 2018 American Chemical Society.

In their paper, the researchers used a wide range of techniques to fully characterise the photophysics and electronic excited states of the NU-901 and NU-1000 MOFs including; UV-VIS spectroscopy, density functional theory electronic structure calculations, transient absorption, and of course fluorescence spectroscopy which we will focus on in this post. Fluorescence spectroscopy was utilised to investigate the nature of the electronic excited states of the two MOFs, specifically; whither polar excited states are involved in the emission process.

To determine this, they measured the fluorescence decays of NU-901 and NU-1000 dissolved in a range of solvents with different polarities using time-correlated single photon counting (TCSPC) with an Edinburgh Instruments Lifespec II (Figure 3). It can be seen that the fluorescence decay of NU-901 is essentially uninfluenced by the choice of solvent in contrast to NU-1000 where the solvent polarity causes a profound difference in the fluorescence decay, with more polar solvents (such as acetonitrile) resulting in a lower fluorescence lifetime. This result indicates that either the emissive states of NU-1000 themselves have polar character or low lying polar excited states are involved in the excited state dynamics.

Fluorescence decay of metal organic frameworks (MOFs)
Figure 3: Fluorescence decays of NU-901 (a) and NU-1000 (b) measured using TCSPC in various solvents with the Lifespec II Fluorescence Lifetime Spectrometer. The sample was excited at 405 nm from an EPL-405 pulsed diode laser. Solid lines are reconvolution fits taking into account the instrument response function of the laser and spectrometer. Reprinted with permission from J. Am. Chem. Soc. 2018 140 (33) 10488-10496. Copyright 2018 American Chemical Society.

In order to determine which of these two scenarios is occurring, the researchers measured fluorescence excitation emission maps (EEM) of NU-901 and NU-1000 in two solvents with different polarity using the FS5 Spectrofluorometer as shown in Figure 4.  In EEM the fluorescence emission spectrum of the sample is measured using a range of excitation wavelengths and the resulting fluorescence emission spectra combined to produce a map of the dependence of the fluorescence emission on excitation wavelength. NU-901 has an emission maximum at 520 nm when excited at 465 nm in both 3-methylpentane and acetonitrile while NU-1000 has an emission maximum at 475 nm in both solvents. The fact that the wavelength of the emission maximum of both metal organic frameworks is independent of the polarity of the solvent reveals that the emissive states in NU-901 and NU-1000 are non-polar. Polar emissive states therefore cannot be responsible for the different lifetimes exhibited by NU-1000 in Figure 3.

However, it can be seen from Figure 4 that that the relative contribution of the two excitation branches of NU-1000 (at 395 nm and 425 nm) is strongly dependent on the choice of solvent, with the 425 nm excitation branch becoming more pronounced in the more polar acetonitrile. To further investigate this, the absolute fluorescence quantum yield of NU-1000 and NU-901 were measured in different solvents using the SC-30 integrating sphere sample module of the FS5 (Figure 5).

FLuorescence Quantum Yield of Metal Organic Frameworks
Figure 5: Fluorescence quantum yield of the MOFs in different solvents (left) measured using the SC 30 integrating sphere sample module of the FS5 (right). Reprinted with permission from J. Am. Chem. Soc. 2018 140 (33) 10488-10496. Copyright 2018 American Chemical Society.

It can be seen that the quantum yield of NU-1000 is much more susceptible to changes in solvent compared to NU-901. The fluorescence quantum yield is essentially a measure of the competition between radiative and non-radiative pathways in a material. The strong quantum yield dependence of NU-1000 therefore reveals that the choice of solvent alters the non-radiative recombination rate. This information in conjunction with electronic structure calculations, reveals that NU-1000 has low lying polar excited states to which the primary excited state is optically coupled. Excited state population can therefore be lost to these polar states and subsequently undergo non-radiative recombination, with the loss rate depending of the polarity of the solvent. This optical coupling to the polar excited states is responsible for the variation in lifetime of NU-1000 seen in Figure 3.

In summary, the research team led by Prof. Deria used fluorescence spectroscopy to uncover the complex photophysics of metal organic frameworks and will aid in the establishment of structure property relationships for these materials. In addition, it is an excellent example of the synergy between different fluorescence spectroscopy techniques being used to uncover a more complete picture of the photophysics of a material.

We are proud to have Professor Deria as one of our customers, and we would like to congratulate him and his team for this excellent achievement.


Read the full JACS Publication on MOFs

Excited-State Electronic Properties in Zr-Based Metal Organic Frameworks as a Function of a Topological Network”.

Instrumentation used for Metal Organic Frameworks Research

The MOFs research completed by Prof. Deria and his team, was carried out using the Edinburgh Instruments FS5 Spectrofluorometer, and the LifeSpec II Fluorescence Lifetime Spectrometer.

Stay in Touch

Stay up-to-date with the latest news, applications, and product information from Edinburgh Instruments by following us on social media, and sign-up to our infrequent newsletter via the red sign-up button below.

RELATED PRODUCTS

RESOURCES

Tags:
  • Research and Publications
Share:
PrevPrevious
NextNext

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}