Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  1. Home
  2. Blog Post
  3. Optimized Photoluminescence Quantum Yield in Upconversion Composites considering the Scattering, Inner Filter Effects, Thickness, Self…

BLOG

Optimized Photoluminescence Quantum Yield in Upconversion Composites considering the Scattering, Inner Filter Effects, Thickness, Self Absorption, and Temperature

  • October 20, 2021
Edit Content

Introduction

Optimising upconversion (UC) composites is challenging as numerous effects influence their unique emission mechanism. Low scattering mediums increase the number of dopants excited, however, high scattering mediums increase the UC efficiency due to its non-linear power dependency. Scattering also leads to greater thermal effects and emission saturation at lower excitation power density (PD). In this work, a photoluminescence quantum yield (PLQY) increase of 270% was observed when hexagonal NaYF4:(18%)Yb3+,(2%)Er3+ phosphor is in air compared to a refractive index[1]matched medium. Furthermore, the primary inner-filter effect causes a 94% PLQY decrease when the excitation focal point is moved from the front of the phosphor to 8.4 mm deep. Increasing this effect limits the maximum excitation PD, reduces thermal effects, and leads to emission saturation at higher excitation PDs. Additionally, self-absorption decreases the PLQY as the phosphor’s thickness increases from 1 to 9 mm. Finally, in comparison to a cuboid cuvette, a 27% PLQY increase occurs when characterizing the phosphor in a cylindrical cuvette due to a lensing effect of the curved glass, as supported by simulations.

Overall, addressing the effects presented in this work is necessary to both maximize UC composite performance as well as report their PLQY more reliably.

Using Edinburgh Instruments FLS920 and co-written by Edinburgh Instruments Application Scientist, Stavros Misopoulos, you can download the full article and read the results of this research.

Download the full article here.

Fluorescence Spectrometers

At Edinburgh Instruments we manufacture a variety of spectrometers that are dedicated to the measurement of fluorescence lifetimes. You can view our full range of fluorescence spectrometers here .

If you would like to stay up to date with our latest news, research and products, why not follow us on social media and sign up to our infrequent eNewsletter below.

RELATED PRODUCTS

RESOURCES

Tags:
  • FLS1000
  • Photoluminescence
Share:
PrevPrevious
NextNext

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}