Skip to content
Skip to content
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
  • News
  • Events
  • eBooks
  • Blog
  • Careers
  • Contact
KNOWLEDGEBASE
  • About Us
  • Products

    Fluorescence Spectrometers

    • FLS1000 Photoluminescence Spectrometer
    • FS5 Spectrofluorometer
    • LifeSpec II Lifetime Spectrometer
    • Mini-tau Lifetime Spectrometer

    Raman Microscopes

    • RM5 Raman Microscope
    • RMS1000 Multimodal Confocal Microscope

    Transient Absorption

    • LP980 Transient Absorption Spectrometer

    FTIR Spectrometers

    • IR5 FTIR Spectrometer

    Lasers and LEDs

    • Pulsed Lasers
    • Gas Lasers
    • Customisation Options
    View All Products
  • Techniques
  • Applications
KNOWLEDGEBASE
Edit Content
  • About Us
  • Products
  • Techniques
  • Applications
  • Knowledgebase
  • eBooks
  • News
  • Events
  • Blog
  • Careers
  • Contact Us

RESOURCES

What is Laser Induced Fluorescence?

  • July 8, 2021
Edit Content

Laser Induced Fluorescence (LIF) is an optical spectroscopic technique where a sample is excited with a laser, and the fluorescence emitted by the sample is subsequently captured by a photodetector. LIF can be understood as a class of fluorescence spectroscopy where the usual lamp excitation is replaced by a laser source. Whilst lasers are now routinely used as excitation sources in photoluminescence spectrometers, Laser Induced Fluorescence was not originally developed for a commercial instrument but as a standalone laser spectroscopy technique.

 

A Brief History of Laser Induced Fluorescence

LIF spectroscopy was first developed by Richard Zare in 1968 for the detection of atoms and molecules in the gas phase.1 Its potential as an analytical technique was quickly realised, as the fluorescence intensity is directly proportional to the concentration of the analyte in the linear power and concentration regime. Laser Induced Fluorescence offers interesting advantages over absorption spectroscopy: zero background, higher selectivity towards the analyte, information about the rotational-vibrational structure of the ground or excited state of the sample, and time-resolved information if using pulsed lasers. In addition, polarisation-dependent measurements are easy to implement since most laser beams are linearly polarised.

One of the first applications of LIF spectroscopy was measuring the temperature of gas-phase samples, and today it is widely used for the analysis of flames.2 The technique soon moved beyond gas samples and into the liquid phase, as it became a detection technique in liquid chromatography and capillary electrophoresis (CE-LIF).3 Nowadays, Laser Induced Fluorescence detection can be found in many contexts, from commercial analytical instruments to advanced microscopy experiments, and it is routinely used in biological and environmental research as well as fundamental spectroscopy studies.

 

Types of Laser Induced Fluorescence

There are different types of Laser Induced Fluorescence spectroscopy depending on the laser and detection system used. It is common to refer to the technique as excitation or emission LIF spectroscopy; Figure 1 illustrates this concept. In the figure a laser is employed to excite molecules from their ground state into an electronically excited state. As the molecules relax back into the ground state, fluorescence is detected by a photomultiplier tube (PMT).

In excitation LIF, the excitation wavelength is varied using a tunable laser which allows one to resolve the vibrational structure of the excited state. In a liquid sample, the molecules will fluoresce from the lowest vibrational level of their excited singlet state, decaying to a series of vibrational levels in the ground state, however the emission spectrum is not resolved by the detection system. A bandpass filter is placed between the sample and PMT to detect all the emission from the sample whilst removing any scattered laser light.

In emission LIF, a fixed pump wavelength is used to excite the sample and the sample’s emission spectrum is analysed utilising a monochromator to select the detection wavelength. The figure shows single-point detection with a PMT, but it is also possible to employ an array detector (CCD or CMOS) to capture the full spectrum in one shot.

Examples of Excitation Laser Induced Fluorescence and Emission LIF Spectroscopy

Figure 1: Schematic representation of excitation (left) and emission (right) Laser Induced Fluorescence spectroscopy.

It is also possible to classify Laser Induced Fluorescence into continuous wave or time-resolved LIF. Continuous wave (CW) LIF utilises a continuous laser for excitation and is employed when only spectral information is required. In time-resolved LIF, a pulsed laser is used to excite the sample and its emission (either a single wavelength or the full spectrum) is detected as a function of time. This provides valuable time-resolved information such as the lifetimes of chemical intermediates and their associated time-gated spectral evolution. Figure 2 presents an example of time-resolved LIF measured in an Edinburgh Instruments LP980. The ICCD detector in the LP980 enables the acquisition of the full LIF spectrum at varying time delays.

Laser induced fluorescence spectra

Figure 2: LIF spectra from [Ru(bpy)3]Cl2 acquired in an LP980 with an ICCD detector at different times after the pump pulse (indicated in the graph). λpump = 450 nm, Epump = 10 mJ, gate width = 100 ns.

 

Edinburgh Instruments Solutions for Laser Induced Fluorescence

Edinburgh Instruments incorporates lasers into photoluminescence spectrometers such as the FLS1000 and the FS5, allowing both CW and time-resolved LIF. Pulsed Nd:YAG lasers, which are popular LIF excitation sources, can be integrated with the FLS1000 and the LP980 spectrometers. In particular the LP980 Transient Absorption Spectrometer has been specifically designed for use with these sources, and it can be configured with a holder specific for LIF spectroscopy. In this configuration (Figure 3), the probe lamp is blocked by a shutter controlled by the software as it is not required for LIF, while the pump beam is directed to the sample which sits closer to the collection optic for maximum LIF sensitivity. The LIF configuration in the LP980 Spectrometer maximises the signal detected ensuring the best performance.

LIF Schematic: Laser Induced Fluorescence configuration of the LP980 spectrometer.

Figure 3: Laser Induced Fluorescence configuration of the LP980 spectrometer.

 

References

1. J. Tango, J. K. Link, and R. N. Zare. Spectroscopy of K2Using Laser‐Induced Fluorescence, J. Chem. Phys. 49 4264 (1968)

2. W. Daily. Laser Induced Fluorescence Spectroscopy in Flames, Prog. Energy Combust. Sci. 23 133 (1997)

3. N. Zare. My Life with LIF: A Personal Account of Developing Laser-Induced Fluorescence, Annu. Rev. Anal. Chem. 5 1 (2012)

 

 

RELATED PRODUCTS

LP980

Upgrades

VIEW

LP980

Transient Absorption Spectrometer

VIEW

Contact our expert team today to find out more about how our products can improve your research

Contact Us
PrevPrevious
NextNext
Previous Molecular Terahertz Laser Next What is Kasha’s Rule?

RESOURCES

Tags:
  • Spectral School
  • LP980
  • Transient Absorption
Related Posts:

LP980 Upgrades

View more »

LP980 Transient Absorption Spectrometer

View more »
Share:

Keep up to date with the latest from Edinburgh Instruments

Join our mailing list and keep up with our latest videos, app notes and more!

LOCATION:
  • Edinburgh Instruments Ltd.
    2 Bain Square, Kirkton Campus, Livingston, EH54 7DQ.
  • sales@edinst.com
  • +44 1506 425 300
ABOUT:
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
  • About Us
  • Techniques
  • Applications
  • Knowledgebase
PRODUCTS:
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
  • Fluorescence Spectrometers
  • Raman Microscopes
  • UV-Vis Spectrophotometers
  • Transient Absorption
  • FTIR Spectrometers
  • Lasers and LEDs
  • Customisation Options
  • Software
  • Upgrades
  • All Products
LEGALS:
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
  • News
  • Events
  • Blog
  • Careers
  • Contact Us
  • Terms and Conditions
  • Privacy Policy
SOCIALS:
Youtube Linkedin X-twitter Facebook
©2024 Edinburgh Instruments. Registered in England and Wales No: 962331. VAT No: GB 271 7379 37
Manage Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
Manage options Manage services Manage {vendor_count} vendors Read more about these purposes
View preferences
{title} {title} {title}