Water Quality by Monitoring the Natural Organic Matter of Aquatic Systems

Georgios Arnaoutakis, Anna Gakamsky, Dirk Näther

AN_P30 v.2
May 2016
Introduction

Water in aquatic environments may consist of a complex mixture of organic compounds. This involves a continuum of natural organic matter of variable size, particulate or colloidal nature\(^1,2\). The Natural Organic Matter (NOM) has been widely used to characterise water. Its measurement involves the Total Organic Content (TOC), the sum of particulate and Dissolved Organic Carbon (DOC)\(^3,4\), also known as humic substances or refractory organic substances.

Humic substances in aquatic systems originate from degradation of plant and animal tissue\(^5\) with a precursor being lignin\(^6\) which fluoresces at 360 nm upon excitation between 240 nm and 320 nm\(^7\). Processes operative during the degradation are complex, with poly-condensation and formation of polyphenols being a possible candidate. The fluorescence can be related to substituted benzoic moieties with the start material being coniferyl alcohol, a basic unit of lignin. Model compounds and component analysis also associated this fluorescence to coniferyl alcohol, stilbene and phenyl-coumarone structures\(^7\)–\(^10\). On the other hand, protein fluorescence centres, especially observed in marine and pond water, are at the same wavelengths as those of tryptophan and tyrosine; although it is not known how these fluorescence centres relate to the structure of DOC\(^11,12\). Fluorescence centres ascribed to humic-like and fulvic-like material occur at higher emission wavelengths\(^3,13\).

The complexity of the absorption and emission spectra makes it impossible to clearly assign individual peaks occurring from independent chromophores. Different techniques are used to characterise NOM\(^4\). A variety of analytical techniques such as fluorescence spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, high pressure size exclusion chromatography, mass spectrometry have been widely employed\(^9\), and even a combination of the techniques is used, especially when water components need to be quantified. In this application note, we present measurements of water obtained from river aquatic systems and show how fluorescence spectroscopy can easily provide initial results on the organic fingerprint of water.

Methods & Materials

Excitation and emission maps (EEM) were measured using a standard configuration FS5 Spectrofluorometer equipped with a 150 W standard xenon lamp and a PMT detector (Hamamatsu, R928P). Higher diffraction orders were filtered by the integrated long wave-pass filters in the FS5. Excitation and emission bandwidth of 4 nm was used, while the integration time of 0.1 s and step of 2 nm enabled the acquisition of a complete EEM in 60 min. Acquisition times as low as 15 min were also obtained for the same parameters and an integration time of 1 ms.
Water samples were acquired from two locations upstream and downstream of river Almond in Livingston, UK. A water sample from the tap was used as a reference. All three samples were filtered for particulates14 in a syringe filter of 0.20 μm pore size (Sartorius, Minisart 17597) which resulted in OD=0.3 at 250 nm. The samples were measured in quartz cuvettes of 10 mm path-length in right angle geometry.

Results - Discussion

The EEM displayed in Figures 1, 2 and 3, correspond to a downstream, an upstream river sample and a water sample from the tap, respectively. The EEM have been scaled to the peak of visible DOC of the downstream river sample. All maps show the band of Raman scattering proportional to the excitation wavelength which can be further normalised15 and corrected for inner-filter16,17 to acquire pure DOC maps6,18.

The assignment of EEM peaks is found in literature as the traditionally defined humic-like regions4,11,19. These are labelled as A with $\lambda_{\text{exc}}/\lambda_{\text{em}}=260$ nm/400–460 nm, and as C with $\lambda_{\text{exc}}/\lambda_{\text{em}}=320–360$ nm/420–460 nm. Soil fulvic acid (D and E) with $\lambda_{\text{exc}}/\lambda_{\text{em}}=390$ nm/509 nm and $\lambda_{\text{exc}}/\lambda_{\text{em}}=455$ nm/521 nm, phytoplankton (N) with $\lambda_{\text{exc}}/\lambda_{\text{em}}=280$ nm/370 nm and tryptophan/protein-like (T) with $\lambda_{\text{exc}}/\lambda_{\text{em}}=275$ nm/340 nm were not observed in these water samples.

![Figure 1: Excitation-emission map of water downstream of the river. The blue cross is at $\lambda_{\text{exc}}/\lambda_{\text{em}}=222$ nm/292 nm, the red at $\lambda_{\text{exc}}/\lambda_{\text{em}}=270$ nm/296 nm and the green at $\lambda_{\text{exc}}/\lambda_{\text{em}}=254$ nm/450 nm.](image-url)
It can be seen that the DOC of water is centred at $\lambda_{\text{exc}}/\lambda_{\text{em}}=250$ nm/450 nm, see green cross in Figures 1 and 2. This is in agreement with running river waters compared to the red-shifted EEM at $\lambda_{\text{exc}}/\lambda_{\text{em}}=250$ nm/470 nm from channels and wetlands.

In addition to the humic-like peak, two additional peaks are present in all samples at $\lambda_{\text{exc}}/\lambda_{\text{em}}=230$ nm/290 nm and $\lambda_{\text{exc}}/\lambda_{\text{em}}=270$ nm/300 nm, marked as blue and red in the Figures, respectively. The peak with $\lambda_{\text{exc}}/\lambda_{\text{em}}=230$ nm/290 nm is associated with the superposition of electron-transfer and benzenoid bands in NOM molecules.

The UV humic-like peak with $\lambda_{\text{exc}}/\lambda_{\text{em}}=270$ nm/300 nm agrees very well with lignin units. In fact, lignin model compounds based on styrene derivatives with excitation 31847-36496 cm$^{-1}$ 274-314 nm and emission 28818-34246±200 cm$^{-1}$ 292-347 nm agree very well with the peaks in the presented maps.

The broad peak at $\lambda_{\text{exc}}/\lambda_{\text{em}}=320$ nm/440 nm can also be associated to lignin. This agrees with the results of Radotic et al. on dehydrogenative polymers in water as another lignin model compound, with excitation at 360 nm-465 nm and fluorescence at 360 nm-600 nm.
Figure 3: Excitation-emission map of tap water. The blue cross is at $\lambda_{\text{exc}}/\lambda_{\text{em}}=230 \text{ nm}/290 \text{ nm}$, while the red at $\lambda_{\text{exc}}/\lambda_{\text{em}}=270 \text{ nm}/300 \text{ nm}$

The water supplied to domestic or industrial premises follows several treatment processes to make it usable or potable13. Although the treatment process of the tap water is unknown to the authors, it can be seen that the humic-like peaks are absent in the EEM of tap water, indicating that certain DOM was removed. Similar fluorescence fingerprints have been reported for raw and treated water samples in reference13.

Conclusions

It can be concluded from the presented excitation-emission maps that the content of aquatic systems is a complex mixture of degradation products of lignin containing aromatic, primarily benzene units. Moreover, it has been shown that the high sensitivity of an FS5 Spectrofluorometer enabled the resolution of both lignin, UV humic-like in addition to humic-like substances. The technique can also be used for rapid routine measurement of maps permitted by the high scanning speed of the instrument, as well as monitor the quality of water in treatment facilities.
References

Proprietary notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by EDINBURGH INSTRUMENTS Limited. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by EDINBURGH INSTRUMENTS in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. EDINBURGH INSTRUMENTS Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality status

This document is Open Access. This document has no restriction on distribution.

Feedback on this Application Note

If you have any comments on this Application Note, please send email to sales@edinst.com giving:

- the document title
- the document number
- the page number(s) to which your comments refer
- an explanation of your comments.

General suggestions for additions and improvements are also welcome.