Environmental Archives | Edinburgh Instruments

ResourcesEnvironmental

Showing 1 - 6 of 6 results


Application Note: Plastics Identification Using ATR-FTIR Spectroscopy

Plastics are widely used daily and are among the primary pollutants on the planet. A solution to prevent environmental pollution due to plastics is to identify their type and dispose of or recycle them appropriately. ATR-FTIR is a simple and robust spectroscopic technique that enables rapids plastics identification based on the characteristic IR spectrum of each sample. In this application note, an Edinburgh Instruments IR5 FTIR Spectrometer was used to identify four different plastic samples successfully.


Application Note: Pesticide Detection on Apple Skin using SERS

Surfaced enhanced Raman scattering (SERS) is a great technique to enhance the Raman scatter from a sample. One application SERS is well suited to is testing for the presence of pesticides on apple skin. This is important for keeping produce safe for consumptions, as well as monitoring the environmental impact of using pesticides.


Application Note: Gemstone Identification Using Raman Microscopy

The gemstone industry suffers massively from forgeries that even highly experienced jewellers cannot determine. Read this application note to discover how Raman microscopy offers itself as a useful technique in the identification of gemstones.


Application Note: Identification of Microplastics Using Raman Spectroscopy

Microplastic pollution is a growing environmental issue. Identification is crucial for assessing their risk to the environment, wildlife, and mankind. Raman microscopy is a great tool for the identification of small microplastics. This application note explores how the RM5 Raman Microscope combined with the KnowItAll Raman database can be used to identify polymers commonly found in the Earths aquatic systems.


Application Note: Charge Carrier Recombination Dynamics of Semi Conductor Photocatalysts

In this application note the dynamics of charge carriers in copper-nitrogen-titanium oxide are studied using time-resolved photoluminescence spectroscopy on the FLS980 Photoluminescence Spectrometer


Application Note: Water Quality by Monitoring the Natural Organic Matter of Aquatic Systems

Water in aquatic environments may consist of a complex mixture of organic compounds. This involves a continuum of natural organic matter of variable size, particulate or colloidal nature. In this application note, we present measurements of water obtained from river aquatic systems and show how fluorescence spectroscopy can easily provide initial results on the organic fingerprint of water.